Math, asked by meerasingh160768, 1 month ago

If d-1/d=6, evaluate (1) d + 1/d (2)d²+1/d² and(3) d⁴+1/d⁴​

Answers

Answered by mathdude500
22

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:d - \dfrac{1}{d} = 6

We know that,

\rm :\longmapsto\: {\bigg[d + \dfrac{1}{d} \bigg]}^{2} -  {\bigg[d - \dfrac{1}{d} \bigg]}^{2}  = 4

\rm :\longmapsto\: {\bigg[d + \dfrac{1}{d} \bigg]}^{2} -  {\bigg[6 \bigg]}^{2}  = 4

\rm :\longmapsto\: {\bigg[d + \dfrac{1}{d} \bigg]}^{2} -  36  = 4

\rm :\longmapsto\: {\bigg[d + \dfrac{1}{d} \bigg]}^{2}  = 4 + 36

\rm :\longmapsto\: {\bigg[d + \dfrac{1}{d} \bigg]}^{2}  = 40

\rm :\longmapsto\:d + \dfrac{1}{d} =  \:  \pm \:  \sqrt{40} =  \:  \pm \: 2 \sqrt{10}

Given that,

\rm :\longmapsto\:d - \dfrac{1}{d} = 6

On squaring both sides, we get

\rm :\longmapsto\: {\bigg[d - \dfrac{1}{d} \bigg]}^{2} =  {6}^{2}

We know,

\red{ \boxed{ \sf{ \: {(x - y)}^{2} =  {x}^{2} +  {y}^{2} - 2xy}}}

So, using this identity, we get

\rm :\longmapsto\: {d}^{2} + \dfrac{1}{ {d}^{2} } - 2 \times d \times \dfrac{1}{d} = 36

\rm :\longmapsto\: {d}^{2} + \dfrac{1}{ {d}^{2} } - 2  = 36

\rm :\longmapsto\: {d}^{2} + \dfrac{1}{ {d}^{2} }  = 36 + 2

 \red{\bf\implies \: \boxed{ \sf{ \:{d}^{2} + \dfrac{1}{ {d}^{2} }  = 38}}}

On squaring both sides, we get

\rm :\longmapsto\: {\bigg[ {d}^{2} +  \dfrac{1}{ {d}^{2} } \bigg]}^{2} =  {38}^{2}

\rm :\longmapsto\: {d}^{4} + \dfrac{1}{ {d}^{4} } + 2 \times  {d}^{2} \times \dfrac{1}{ {d}^{2} } = 1444

\rm :\longmapsto\: {d}^{4} + \dfrac{1}{ {d}^{4} } + 2 = 1444

\rm :\longmapsto\: {d}^{4} + \dfrac{1}{ {d}^{4} }= 1444 - 2

\red{ \bf\implies \:\boxed{ \sf{ \: {d}^{4} + \dfrac{1}{ {d}^{4} }= 1442}}}

Additional Information :-

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions