Math, asked by fahadfaria2015, 1 year ago

If DE||BC, then find x
AD =3cm
DB=4cm
BC = 14cm

Attachments:

Answers

Answered by gtessa350
22

Answer:

6 cm

Step-by-step explanation:

It is given that DE ║ BC

\frac{AD}{DB} = \frac{AE}{EC}  (By Basic Proportionality Theorem)

\frac{DB}{AD} = \frac{EC}{AE}

\frac{DB}{AD} + 1 = \frac{EC}{AE} + 1

\frac{DB+AD}{AD} = \frac{EC+AE}{AE}

\frac{AB}{AD} = \frac{AC}{AE}

\frac{AD}{AB} = \frac{AE}{EC}  (Sides are proportional)

∠ A = ∠ A   (Same angle)

∴ Δ ADE is similar to Δ ABC  (SAS Similarity Criterion)

\frac{AD}{AB}  =  \frac{DE}{BC}  (CPCT)

⇒  \frac{3}{4+3} = \frac{DE}{14}

\frac{3}{7} =  \frac{DE}{14}

⇒ 14 × 3  = 7 DE

⇒ 42 = 7 DE

\frac{42}{7} = DE

⇒ 6 = DE

∴ DE = 6 cm

           

Answered by amitnrw
4

Given : DE || BC

AD = 3cm, BD = 4cm and BC= 14 cm

To Find : DE

Solution:

DE || BC

=> ∠D = ∠B    Corresponding angles are equal

   ∠E = ∠C     Corresponding angles are equal

=> ΔADE ~ Δ ABC  using AA similarity

Ratio of corresponding sides of similar triangle is equal

Hence  DE/BC = AD / AB

=> DE/ 14 = 3 /(AD + BD)

=> DE/14 = 3/(3 + 4)

=> DE/14 = 3/7

=> DE = 6  

Hence length of DE = 6 cm

Learn More:

थेल्स प्रमेय(BPT) का कथन लिखकर उसे ...

brainly.in/question/21435493

if a line divides any two sides of a triangle in the same ratio then the ...

brainly.in/question/25977302

Similar questions