If DE||BC, then find x
AD =3cm
DB=4cm
BC = 14cm
Answers
Answer:
6 cm
Step-by-step explanation:
It is given that DE ║ BC
∴ = (By Basic Proportionality Theorem)
⇒ =
⇒ + 1 = + 1
⇒ =
⇒ =
⇒ = (Sides are proportional)
∠ A = ∠ A (Same angle)
∴ Δ ADE is similar to Δ ABC (SAS Similarity Criterion)
∴ = (CPCT)
⇒ =
⇒ =
⇒ 14 × 3 = 7 DE
⇒ 42 = 7 DE
⇒ = DE
⇒ 6 = DE
∴ DE = 6 cm
Given : DE || BC
AD = 3cm, BD = 4cm and BC= 14 cm
To Find : DE
Solution:
DE || BC
=> ∠D = ∠B Corresponding angles are equal
∠E = ∠C Corresponding angles are equal
=> ΔADE ~ Δ ABC using AA similarity
Ratio of corresponding sides of similar triangle is equal
Hence DE/BC = AD / AB
=> DE/ 14 = 3 /(AD + BD)
=> DE/14 = 3/(3 + 4)
=> DE/14 = 3/7
=> DE = 6
Hence length of DE = 6 cm
Learn More:
थेल्स प्रमेय(BPT) का कथन लिखकर उसे ...
brainly.in/question/21435493
if a line divides any two sides of a triangle in the same ratio then the ...
brainly.in/question/25977302