Math, asked by Kartik5036, 1 month ago

If E 1 , E 2 , E 3 , . . . , E n are non empty disjoint sets and subsets of sample space S , and a set E n + 1 is also a subset of S , then which of the following statements are true? The sets E 1 ∩ E n + 1 , E 2 ∩ E n + 1 , E 3 ∩ E n + 1 , . . . , E n ∩ E n + 1 are disjoint. P ( ⋃ n i = 1 E i ) = ∑ n i = 1 P ( E i ) If E n + 1 , E n are disjoint then E 1 , E 2 , . . . , E n − 1 are disjoint with E n + 1 . The sets E 1 , E 2 , E 3 , E 4 , . . . , E n , Φ are disjoint. The sets E 1 , E 2 , E 3 , E 4 , . . . , E n , S are disjoint.

Answers

Answered by kkrishnathakur195
0

Answer:

E1 E2 E3 E4 3E1E2E3E4[[E1E2E3E4]

Similar questions