Physics, asked by indu12374, 9 months ago

if f= ax + bt^2 + c where f= force x=distance and t = time find the dimensions of a,band c

Answers

Answered by Anonymous
9

Given :

  • F = ax + bt² + c

To Find :

  • Dimensions of a, b and c

Solution :

We're given equation F = ax + bt² + c. Where,

  • F is force
  • x is displacement
  • t is time

And the dimensions formula of following are :

\: \: \: \: \: \: \: \: \bullet \: \sf{F \: = \: [ML T^{-2}]} \\ \\ \sf{\: \: \: \: \: \: \: \: \bullet \: x \: = \: [M^0 L T^0]} \\ \\ \sf{\: \: \: \: \: \: \: \: \bullet \: t \: = \: [M^0 L^0 T]}

____________________

\implies \sf{F \: = \: ax} \\ \\ \implies \sf{[MLT ^{-2}] \: = \: a \: \times \: [M^0 L T^0]} \\ \\ \implies \sf{a \: = \: \dfrac{[MLT^{-2}]}{[M^0 L T^0]}} \\ \\ \implies \sf{a \: = \: [ML^{1 \: - \: 1} T^{-2}]} \\ \\ \implies \sf{a \: = \: [ML ^0 T^{-2}]}

____________________________

\implies \sf{F \: = \: bt^2} \\ \\ \implies \sf{[MLT^{-2}] \: = \: b \: \times \: [M^0 L^0 T^2]} \\ \\ \implies \sf{b \: = \: \dfrac{[MLT^{-2}]}{[M^0 L^0 T^2]}} \\ \\ \implies \sf{b \: = \: [MLT^{-2 \: - \: 2}]} \\ \\ \implies \sf{b \: = \: [MLT^{-4}]}

___________________________

\implies \sf{F \: = \: c} \\ \\ \implies \sf{c \: = \: [MLT^{-2}]}

Answered by vkpathak2671
0

Explanation:

x+b t^{2}+c x t where F is force, x is distance and t is time. Then what is dimension of a x^{2} c ...

Similar questions