Math, asked by shyaamdgr8, 10 months ago

If f, g : R → R be defined by f(x) = 2x + 1 and g(x) = x2 - 2, ∀ x ∈ R, respectively . Then, find fog

Answers

Answered by BrainlyConqueror0901
32

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{fog(x)=2x^{2}-3}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given: }}  \\  \tt:  \implies f(x) = 2x + 1 \\  \\ \tt:  \implies g(x) =  {x}^{2}  - 2 \\  \\  \red{\underline \bold{To \: Find: }}  \\  \tt:  \implies fog(x)=?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies fog(x) = f(g(x))  \\  \\ \tt:  \implies fog(x) = f( {x}^{2}  - 2) \\  \\ \tt:  \implies fog(x) = 2( {x}^{2}  - 2) + 1 \\  \\ \tt:  \implies fog(x)= {2x}^{2}  - 4 + 1 \\  \\  \green{\tt:  \implies fog(x) = 2 {x}^{2}  - 3} \\  \\   \green{\tt \therefore fog(x)  \: is \:  {2x}^{2}  - 3}

Similar questions