If f : R → R and g : R → R are defined by f(x) = 3 x - 1, g(x) = x² + 1 then findi. fof (x² + 1)ii. fog (2)iii. gof (2a - 3)
Answers
Answered by
16
HELLO DEAR,
GIVEN:- If f : R → R and g : R → R are defined by f(x) = 3 x - 1, g(x) = x² + 1
( 1 ) (fof)(x² + 1)
=> f{f(x² + 1)}
=> f{3(x² + 1) - 1}
=> f(3x² + 2)
=> 3(3x² + 2) - 1
=> 9x² + 6 - 1
=> 9x² + 5
( 2 ) (fog)(2)
=> f{g(2)}
=> f(x² + 1)
=> 3(x² + 1) - 1
=> 3x² + 3 - 1
=> 3x² + 2
( 3 ) (gof)(2a - 3)
=> g{f(2a - 3)}
=> g{3(2a - 3) - 1
=> g(6a - 10)
=> (6a - 10)² + 1
=> 36a² + 100 + 120a + 1
=> 36a² + 120a + 101
I HOPE IT'S HELP YOU DEAR,
THANKS
GIVEN:- If f : R → R and g : R → R are defined by f(x) = 3 x - 1, g(x) = x² + 1
( 1 ) (fof)(x² + 1)
=> f{f(x² + 1)}
=> f{3(x² + 1) - 1}
=> f(3x² + 2)
=> 3(3x² + 2) - 1
=> 9x² + 6 - 1
=> 9x² + 5
( 2 ) (fog)(2)
=> f{g(2)}
=> f(x² + 1)
=> 3(x² + 1) - 1
=> 3x² + 3 - 1
=> 3x² + 2
( 3 ) (gof)(2a - 3)
=> g{f(2a - 3)}
=> g{3(2a - 3) - 1
=> g(6a - 10)
=> (6a - 10)² + 1
=> 36a² + 100 + 120a + 1
=> 36a² + 120a + 101
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions