If f:R → R is defined by f(x) = x2 – 3x + 2, find f(f(x)).
Answers
Answer :
fof(x) = x⁴ - 6x³ + 10x² - 3x
Solution :
★ Given :- f : R → R , f(x) = x² - 3x + 2
★ To find :- fof(x) = ?
We have ;
f(x) = x² - 3x + 2
Thus ,
=> fof(x) = f [ f(x) ]
=> fof(x) = f (x² - 3x + 2)
=> fof(x) = (x² - 3x + 2)² - 3(x² - 3x + 2) + 2
=> fof(x) = (x²)² + (-3x)² + 2² + 2•x²•(-3x)
+ 2•(-3x)•2 + 2•2•x² - 3•x²
+ 3•3x - 3•2 + 2
=> fof(x) = x⁴ + 9x² + 4 - 6x³ - 12x + 4x²
- 3x² + 9x - 6 + 2
=> fof(x) = x⁴ - 6x³ + 10x² - 3x
Hence ,
fof(x) = x⁴ - 6x³ + 10x² - 3x
Answer:
x^4 -6x^3 +10x^2 -12x
Step-by-step explanation:
f(x) = x^2 -3x +2
f(f(x)) = (x^2 -3x +2)^2 -3(x^2 -3x +2) +2
f(f(x)) = (x^2 -3x +2) {(x^2 -3x +2)-3} +2
f(f(x)) = (x^2 -3x +2)((x^2 -3x -1) +2
f(f(x)) = x^4 -3x^3 -x^2 -3x^3 + 9x^2 -6x +2x^2 -6x -2 +2
f(f(x)) = x^4 -6x^3 +10x^2 -12x