Math, asked by janhavipatil1977, 4 months ago

if f(t)=1 then L[f(t)is

Answers

Answered by pulakmath007
1

\displaystyle \sf{  If \:  f(t)=1 \:  \:  then \:  \:  L[f(t)] \:  \:  is \:  \:  \frac{1}{s} }

Given :

f(t) = 1

To find :

L[f(t)]

Concept :

The LAPLACE TRANSFORMS of f(t), denoted by L{f(t)} and defined as :

\displaystyle \sf{  L\{f(t)\} =\displaystyle \sf \int\limits_{0}^{\infty} e^{-st}  \: f(t)\, dt}

Solution :

Step 1 of 2 :

Write down the given function

Here the given function is f(t) = 1

Step 2 of 2 :

The Laplace transform of the function

The required Laplace transform

\displaystyle \sf{ =   L\{f(t)\} }

 =\displaystyle \sf \int\limits_{0}^{\infty} e^{-st}  \: f(t)\, dt

 =\displaystyle \sf \int\limits_{0}^{\infty} e^{-st}  .\: 1\, dt

 =\displaystyle \sf \int\limits_{0}^{\infty} e^{-st}  \, dt

 =\displaystyle \sf   \frac{ {e}^{ - st} }{ - s}  \bigg| _{0}^{\infty}

 =\displaystyle \sf   0 - \frac{ 1}{ - s}

 =\displaystyle \sf    \frac{ 1}{ s}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. write the expression for gradient and divergence

https://brainly.in/question/32412615

2. prove that the curl of the gradient of

(scalar function) is zero

https://brainly.in/question/19412715

Similar questions