if f(x)=1/1-x then prove that f[f{f(x)}]=x
Answers
Answered by
1
Answer:
L.H.S :-
f(x) = 1 / 1 - x ....
So ... f[ f { f(x) } ]
= f [ f {1 / 1 - x } ]
= f [ 1 / {1 - (1 / 1 - x)}] = f[ 1 / {(1 - x - 1) / (1 - x)}] = f[ (1 - x) / (1 - x - 1)]
= f [ (1 - x) / -x ]
= 1 / [1 - {(1 - x) / -x}]
= 1 / [1 + {(1 - x) / x}]
= 1 / {(x + 1 - x) / x}
= x / 1 = x = R.H.S ....
Proved ...
Hope it's Helpful for you...
Answered by
8
f(x ) = 1/(1-x)
f{f(x)= 1/ {1 - 1/(1-x)}
f{f(x)= (1- x)/(-x) = -1/x + 1
f[f{f(x)}]= -1/{1/(1-x)} + 1
f[f{f(x)}]= -1 + x + 1
Hence LHS = RHS proved
Similar questions
Math,
6 months ago
Computer Science,
6 months ago
Math,
6 months ago
Math,
1 year ago
Biology,
1 year ago
Social Sciences,
1 year ago
Biology,
1 year ago