if f(x) = 1-sin^3x/3cos^2x if x
a , if x = pi/2 is continous at x = pi/2
b(1-sinx)/(pi-2x)^2
FIND VALUES OF a , b
Answers
Answered by
9
Step-by-step explanation:
Given if f(x) = 1-sin^3x/3cos^2x if a ,x = pi/2 is continuous at x = pi/2
b(1-sinx)/(pi-2x)^2 FIND VALUES OF a , b
- Now let us write the function.
- So f(x) = {1 – sin^3 x / 3 cos^2 x when x < π/2
- When x = π/2 , it will be a
- Now b(1 – sin x) / (π – 2x)^2 when x > π/2
- Now left hand side will be
- So lim x ->π/2- 1 – sin^3 x / 3 cos^2 x
- Now we have a^3 – b^3 = (a – b) (a^2 + ab + b^2)
- = lim x-> π/2 - (1 – sinx) (1^2 + 1.sinx + sin^2 x) / 3 (1 – sin^2 x)
- = lim x-> π/2 - (1 – sinx) (1^2 + 1.sinx + sin^2 x) / 3 (1 – sin x) (1 + sin x)
- = now putting value of limit we get
- = 1 + 1 + 1 / 3(1 + 1)
- = ½
- Now f (π/2) = a
- Or a = 1/2
- Now taking the right hand side we get
- = Lim x ->π/2 + b(1 – sin x) / (π – 2x)^2
- Now converting sinx to cos x
- = lim x ->π/2 + b (1 – cos (π/2 – x) ) / (π – 2x)^2
- = lim x -> π/2 + b . 2 sin^2 (π / 4 – x / 2) / [ 4(π/4 – x/2)]^2
- = lim x -> π/2 + 2b . sin^2 (π / 4 – x / 2) / 16 (π / 4 – x / 2)^2
- Suppose lim x->0, sin x / x = 1, so x and x are same.
- Similarly we get
- = 2b / 16
- = b/8
- Therefore right hand side is b/8
- Now l. hs = ½ , f(π/2) = a and r. h.s = b/8
- So a = ½ and
- Also b/8 = ½
- Or b = 4
Reference link will be
https://brainly.in/question/16645685
Similar questions
Social Sciences,
8 months ago
Science,
8 months ago
Science,
8 months ago
Science,
1 year ago
Math,
1 year ago