Math, asked by luckysingh9717, 1 year ago

Prove that the points (2,-2),(-2,1),(5,2) are the vertices of the right angle triangle also find area of the triangle

Answers

Answered by tejasvi16
133
1st use distance formula for each side of the triangle
then use PT for checking if they are equal then u will get it as equal
then use area of triangle formula u will get the ans
Attachments:
Answered by mysticd
61

Answer:

\orange {ABC \:is \:a \: right \: triangle .}

 \red {Area \: of \: \triangle ABC }

\green {= 12.5 \: square \: units}

Step-by-step explanation:

 Let \:A(2,2)=(x_{1},y_{1}),\:\:B(-2,1)=(x_{2},y_{2}),\:</p><p>\\and \:C(5,2)=(x_{3},y_{3}),\:are \: vertices \:of \\a \: triangle

\blue { Distance \: between \:A\:and \: B}

\orange { = \sqrt{(x_{2}-x_{1})^{2} + (y_{2} - y_{1})^{2}}}

 = \sqrt{(-2-2)^{2} + [1 - (-2]^{2}}

 = \sqrt{(-4)^{2} + 3^{2}}

 = \sqrt{ 16 + 9 }

 = \sqrt{25}

 = 5 \: ---(1)

\blue { Distance \: between \:B\:and \: C}

 = \sqrt{[5-(-2)]^{2} + (2- 1)^{2}}

 = \sqrt{7^{2} + 1^{2}}

 = \sqrt{ 49 + 1 }

 = \sqrt{50}

 = \sqrt{2\times 5^{2}}\\=5\sqrt{2}}---(2)

\blue { Distance \: between \:C\:and \: A}

 = \sqrt([5-2)^{2} + [2-(-2)]^{2}}

 = \sqrt{3^{2} + 4^{2}}

 = \sqrt{ 9 + 16 }

 = \sqrt{25}

 = 5---(3)

 AB^{2} = 25

 BC^{2} = 50

 CA^{2} = 25

 BC^{2} = AB^{2} + CA^{2}

 \orange {ABC \:is \:a \: right \: triangle .}

 \blue {\underline \:By \: Pythagoras\: Theorem }

 \red {Area \: of \: \triangle ABC }

=\frac{1}{2}\times AB \times CA

 = \frac{1}{2}\times 5 \times 5

 = \frac{25}{2} \\= 12.5 \: square \: units

Therefore.,

\orange {ABC \:is \:a \: right \: triangle .}

 \red {Area \: of \: \triangle ABC }

\green {= 12.5 \: square \: units}

•••♪

Similar questions