Math, asked by vishugupta0, 9 months ago

if f(x)=(1+tan x)/(1-tan x) then f'(x)=​

Answers

Answered by senboni123456
3

Step-by-step explanation:

Given,

f(x) =  \frac{(1 +  \tan(x) )}{(1 -  \tan(x)) }

 =  > f(x) =  \frac{ \tan( \frac{\pi}{4} ) +  \tan(x)  }{1 -  \tan( \frac{\pi}{4} ). \tan(x)  }

 =  > f(x) =  \tan( \frac{\pi}{4}  + x)

Now,

 \frac{d(f(x))}{dx}  =  \frac{1}{1 + ( \frac{\pi}{4}  + x)^{2} }

 = \frac{1}{1 +  \frac{\pi^{2} }{16}  +  {x}^{2} +  \frac{\pi.x}{2}   }

 =  \frac{16}{16 +  {\pi}^{2} + 16 {x}^{2} + 8\pi.x  }

Similar questions