If f (x) = 2 x + 5 and three-halves are inverse functions of each other and StartFraction 41 Over 8 EndFraction, what is mc005-4.jpg?
mc005-5.jpg
mc005-6.jpg
mc005-7.jpg
mc005-8.jpg
Answers
Step-by-step explanation:
The inverse of the function h(x) is h^{-1}(x)=\frac{2}{5}x-\frac{8}{5}h
−1
(x)=
5
2
x−
5
8
.
Step-by-step explanation:
The given function is
h(x)=\dfrac{5}{2}x+4h(x)=
2
5
x+4
Replace h(x) by y.
y=\dfrac{5}{2}x+4y=
2
5
x+4
Interchange x and y.
x=\dfrac{5}{2}y+4x=
2
5
y+4
Subtract 4 from both sides to isolate variable y,
x-4=\dfrac{5}{2}yx−4=
2
5
y
Multiply both sides by 2.
2x-8=5y2x−8=5y
Divide both sides by 5.
\frac{2}{5}x-\frac{8}{5}=y
5
2
x−
5
8
=y
Replace y by h⁻¹(x).
h^{-1}(x)=\frac{2}{5}x-\frac{8}{5}h
−1
(x)=
5
2
x−
5
8
Therefore the inverse of the function h(x) is h^{-1}(x)=\frac{2}{5}x-\frac{8}{5}h
−1
(x)=
5
2
x−
5
8
.
please mark as brain list
Answer:
3/2 B.
Step-by-step explanation:
If f (x) = 2 x + 5 and three-halves are inverse functions of each other and StartFraction 41 Over 8 EndFraction, what is mc005-4.jpg?
mc005-5.jpg
mc005-6.jpg
mc005-7.jpg
mc005-8.jpg