Math, asked by kumarlalit1715, 11 hours ago

If f(x)=2tanx/1+tan²x, then find f(π/4).​

Answers

Answered by WilsonChong
0

Answer:

f(π/4)=1

Step-by-step explanation:

tan(π/4) = 1

Therefore,

f(\pi/4)=(2tan(\pi/4))/(1+tan^2(\pi/4))=(2*1)/(1+1^2)=2/2=1

Hope this helps. :)

Answered by pulakmath007
0

If f(x) = 2tanx/1 + tan²x then f(π/4) = 1

Given :

\displaystyle \sf{f(x) =  \frac{2tanx}{1 +  {tan}^{2}x }   }

To find :

\displaystyle \sf{ f \bigg(  \frac{\pi}{4}  \bigg)  }

Solution :

Step 1 of 2 :

Write down the given function

Here the given function is

\displaystyle \sf{f(x) =  \frac{2tanx}{1 +  {tan}^{2}x }   }

On simplification we get

\displaystyle \sf{f(x) =sin 2x \:  \:  \: \bigg[ \:  \because \:sin 2x = \frac{2tanx}{1 +  {tan}^{2}x } \bigg]     }

Step 2 of 2 :

Find the value of f(π/4)

Putting x = π/4 we get

\displaystyle \sf{ f \bigg(  \frac{\pi}{4}  \bigg)  = sin  \: 2\bigg(  \frac{\pi}{4}  \bigg) }

\displaystyle \sf{ \implies f \bigg(  \frac{\pi}{4}  \bigg)  = sin  \: \bigg(  \frac{\pi}{2}  \bigg)}

\displaystyle \sf{ \implies f \bigg(  \frac{\pi}{4}  \bigg)  = 1}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if polynomial p(t)=t⁴-t³+t²+6,then find p(-1)

https://brainly.in/question/3539645

2. Find the value of the polynomial 2x + 5 at x = – 3

https://brainly.in/question/50335429

Similar questions