Math, asked by aatiqreyas, 5 hours ago

If f(x)= (2x-3sinx)/(3x+4tanx ) ;x≠0 ,is continuous at x=0 ,then f(0) is
(A)-2/7 (B) 2/7 (C) -1/7 (D) 3/7

Answers

Answered by inchara608
0

Answer:

Given,

f(x)=

3x+2sinx

2x+3sinx

If f(x) is continuous at x=0, then

x→0

llim

f(x)=f(0)

x→0

lim

3x+2sinx

2x+3sinx

=f(x)

⇒f(0)=

x→0

lim

x(3+

x

2sinx

)

x(2+

x

3sinx

)

⇒f(0)=

x→0

lim

(3+

x

2sinx

)

(2+

x

3sinx

)

⇒f(0)=

x→0

lim

(3+

x

2sinx

)

x→0

lim

(2+

x

3sinx

)

⇒f(0)=

3+2

x→0

lim

(

x

sinx

)

2+3

x→0

lim

(

x

sinx

)

⇒f(0)=

3+2⋅1

2+3⋅1

⇒f(0)=

5

5

=1

Answered by jaylade012
1

Answer:

divide both numerator and denominator by x

We get

2-3sinx/x

_______. •°• we know sinx / x = 1

3+4tanx/x. •°• we know tanx / x =1

•°•2-3

____ = -1/7

3+4

CORRECT OPTION IS C

Similar questions