Math, asked by jasmit5tajoshitaa, 1 year ago

IF f(x)=3x^3-5x^2+7x-11, is f(0)+f(1)=f(2)?

Answers

Answered by deybannhi
52
f(x)=3x^3-5x^2+7x-11
f(0)=3*0^3  -5*0^2  +7*0 -11
     =0-0+0-11
     = -11
now
f(1)=
3*1^3  -5*1^2  +7*1 -11
=3-5+7-11
= -6
f(2)=
3*2^3  -5*2^2  +7*2 -11
=3*8 - 5*4 + 7*2 -11
=24-20+14-11
=9
as per question
isf(0) +f(1)=f(2)?
    -11+(-6)=9
    -11-6=9
    -17=9
clearly we say f(0) +f(1) is not =to f(2)
Answered by shashaanksinha2008
0

Answer:

No

Step-by-step explanation:

Given;

f(x)=3x^3-5x^2+7x-11

Now;

f(0)=3*0^3  -5*0^2  +7*0 -11

    =0-0+0-11

    = -11

f(1)=3*1^3  -5*1^2  +7*1 -11

=3-5+7-11

= -6

f(2)=3*2^3  -5*2^2  +7*2 -11

=3*8 - 5*4 + 7*2 -11

=24-20+14-11

=9

f(0) +f(1)=f(2)?

   -11+(-6)=9

   -11-6=9

   -17=9

we say that

f(0) +f(1) is not = f(2)

Similar questions