Math, asked by prakritikc848, 3 months ago

if f(X)=3x-3
find the value of f^-1(3)​

Answers

Answered by allysia
3

Step-by-step explanation:

Let, f(x) = y

3x-3=y

x=

 \dfrac{y  + 3}{3} = g(y)

f(g(y))=

3 (\dfrac{y + 3}{3} ) - 3 = y

and

g(f(x)) =

 \dfrac{(3x - 3) + 3}{3}  = x

Therefore the inverse exists and

 {f}^{ - 1} (x) = g(x)

=

{f}^{ - 1} (x) = \dfrac{x + 3}{3}

Answered by suhithkarralla
0

Answer:

f^-1(x)=x+3/3

Step-by-step explanation:

f(x)=3x-3

let,

f(x)=3x-3=y

x=f^-1(y)

3x=y+3

x=y+3/3=f^-1(y)

f^-1(x)=x+3/3

Similar questions