if f(x)=ax+b/bx+a, prove that f(x).f(1/x)=1
Answers
Answered by
18
Given that
f(x) = (ax+b)/(bx+a) ...(1)
Substitute x = 1/x in (1), we get
Then f(1/x) = (a/x+b)/(b/x+a)
f(1/x) = [(a+bx)/x]/[(b+ax)/x]
f(1/x) = (a+bx)/(b+ax)
f(1/x) = (bx+a)/(ax+b)
Now
f(x)*f(1/x) = [(ax+b)/(bx+a)]× [(bx+a)/(ax+b)]
f(x)*f(1/x) = [(ax+b)(bx+a)]/[(ax+b)(bx+a)]
f(x)*f(1/x) = 1
Hence proved.
pehrun:
thank you
Answered by
1
Answer:
Given that
f(x) = (ax+b)/(bx+a)
...(1)
Substitute x = 1 / x in (1), we get
Then f(1 / x) = (a / x + b) / (b / x + a)
f(1 / x) = [(a + bx) / x] / [(b + ax) / x]
f(1 / x) = (a + bx) / (b + ax) f(1 / x) = (bx + a) / (ax + b)
Now
f(x)*f(1/x) = [(ax+b)/(bx+a)]× [(bx+a)/(ax+b)]
f(x)*f(1/x) = [(ax+b)(bx+a)]/[(ax+b)(bx+a)]
f(x)*f(1/x) = 1
Hence proved.
Similar questions