If f(x) = cos x + sin x and g(x) = x2 – 1, then g(f () is injective in the interval
A
[0, 1]
B ]
(-4,1)
C]
D (0,7)
Attachments:
Answers
Answered by
3
Answer:
MATHS
If f(x)=sinx+cosx, g(x)=x
2
−1 then g(f(x)) is invertible in the domain.
ANSWER
f(x)=sinx+cosx,g(x)=x
2
−1
Theng[f(x)]
g[f(x)]=g(sinx+cosx)=(sinx+cosx)
2
−1
g[f(x)]=sin
2
x+cos
2
x+2sinx.cosx−1
=1+2sinx.cosx−1[∵sin
2
x+cos
2
=1]
g(f(x))=sin2x
Ans.[∵2sinx.cosx=sin2x]
Letg(f(x))=y
y=sin2x[∵Domainofsinxis
2
−π
,
2
π
]
∴Domainofsin2x=[
2
−π
,
2
π
]Ans.
Step-by-step explanation:
Mark in brainliest...
hurry up
Similar questions