Math, asked by omaansh, 10 months ago

if f(x)=cos²+sec²
then f(x)=
a]≤1
b]≥1
c]≤2
d]≥2

kindly answer with full explaination

Answers

Answered by prajwal1697
4

solution \\ here \: we \: can \: use \: relation \: betweem  \\ \: arthematic \: mean \: and \: geometric \: mean  \\ am \geqslant gm \\ so \: \\  \frac{{ (  \cos( x ) ) }^{2}  +  { (\sec( x )) }^{2} }{2}  \geqslant  \sqrt{ { (\cos( x )) }^{2}  { (\sec( x ) )}^{2} } \\ \frac{f(x)}{2}  \geqslant  \cos(x ) \sec(x)  \\  f(x) \geqslant (2)1 \\ therefore \: the \: answer \: is \:  \\  \geqslant 2 \\ hope \: it \: helps

Similar questions