If F(x) is a cumulative distribution function of a continuous random variable x with p.d.f f(x) then F′(x) = __________
Answers
Answered by
0
Concept :- The cumulative distribution function of a continuous random variable X can be expressed as integral of its probability density function ( P.d.f) fₓ as follows
Here we have to find out F'(x) .
Means, F'(x) = dF(x)/dx
Differentiate above expression with respect to x
F'(x) = f(x)dx/dx - f(-∞)d(-∞)/dx
F'(x) = f(x) - 0 = f(x)
Hence, F'(x) = f(x)
Here we have to find out F'(x) .
Means, F'(x) = dF(x)/dx
Differentiate above expression with respect to x
F'(x) = f(x)dx/dx - f(-∞)d(-∞)/dx
F'(x) = f(x) - 0 = f(x)
Hence, F'(x) = f(x)
Similar questions
Math,
8 months ago
World Languages,
8 months ago
Social Sciences,
8 months ago
Math,
1 year ago
Biology,
1 year ago
Math,
1 year ago
India Languages,
1 year ago