Math, asked by manyarawat46, 1 month ago

If f(x) is equal to 2*x+2 - 16/4*x-16, if x not equal to 2 find k?​

Attachments:

Answers

Answered by shrutisharma07
0

Answer:

Since f(x) is continuous at x = 2, so

lim(x→2) f(x) = f(2) = k

t

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:f(x) = \begin{cases} &\sf{\dfrac{ {2}^{x + 2}  - 16}{ {4}^{x}  - 16}  \:  \: if \:  \: x \:  \ne \: 2} \\ &\sf{k \:  \: if \:  \: x \:  \:  =  \: 2} \end{cases}\end{gathered}\end{gathered}

Now, it is given that f(x) is continuous at x = 2.

We know,

A function f(x) is said to be continuous at x = a iff

\boxed{ \rm \: \displaystyle\lim_{x \to a} f(x) = f(a)}

Now, According to statement,

\bf :\longmapsto\:f(2) = k

Consider,

\rm :\longmapsto\:\displaystyle\lim_{x \to 2}  \frac{ {2}^{x + 2}  - 16}{ {4}^{x}  - 16}

If we put directly x = 2, we get indeterminant form.

So, it can be rewritten as

\rm \:  =  \:  \: \:\displaystyle\lim_{x \to 2}  \frac{ {2}^{x} \times  {2}^{2}   - 16}{ {2}^{2x}  -  {4}^{2} }

\rm \:  =  \:  \: \:\displaystyle\lim_{x \to 2}  \frac{ {2}^{x} \times  4   - 16}{  {( {2}^{x}) }^{2}  -  {4}^{2} }

\rm \:  =  \:  \: \displaystyle\lim_{x \to 2}  \frac{4 \:  \cancel{( {2}^{x} - 4)} }{ \cancel{( {2}^{x}  - 4)} \:  \: ( {2}^{x}  + 4)}

 \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  {x}^{2} -  {y}^{2}  = (x + y)(x - y) \bigg \}}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 2}  \frac{4}{ {2}^{x} + 4 }

\rm \:  =  \:  \: \dfrac{4}{ {2}^{2}  + 4}

\rm \:  =  \:  \: \dfrac{4}{8}

\rm \:  =  \:  \: \dfrac{1}{2}

So, we have

\rm :\longmapsto\:\displaystyle\lim_{x \to 2}  \frac{ {2}^{x + 2}  - 16}{ {4}^{x}  - 16}  =  \frac{1}{2}

Now, Since it is given that f(x) is continuous at x = 2.

Therefore,

\rm :\longmapsto\:\displaystyle\lim_{x \to 2}  \: f(x) = f(2)

\bf\implies \:k \:  =  \: \dfrac{1}{2}

Additional Information :-

 \blue{\boxed{ \rm \: \displaystyle\lim_{x \to 0}  \frac{sinx}{x}  = 1}}

 \blue{\boxed{ \rm \: \displaystyle\lim_{x \to 0}  \frac{tanx}{x}  = 1}}

 \blue{\boxed{ \rm \: \displaystyle\lim_{x \to 0}  \frac{tan^{ - 1} x}{x}  = 1}}

 \blue{\boxed{ \rm \: \displaystyle\lim_{x \to 0}  \frac{sin^{ - 1} x}{x}  = 1}}

 \blue{\boxed{ \rm \: \displaystyle\lim_{x \to 0}  \frac{ {e}^{x}  - 1}{x}  = 1}}

 \blue{\boxed{ \rm \: \displaystyle\lim_{x \to 0}  \frac{ {a}^{x}  - 1}{x}  = loga}}

 \blue{\boxed{ \rm \: \displaystyle\lim_{x \to 0}  \frac{log(1 + x)}{x}  = 1}}

Similar questions