Math, asked by prateek52, 1 year ago

if f(x) is invertible function ,find the inverse of f(x)=(3x-2)/5.

Answers

Answered by abhi178
49


concept : - if y = f(x) is a invertible function then, f(y) shows the inverse of f(x) .
f(x)=\frac{3x-2}{5}\\\\\\Let,f(x)=y\\\\y=\frac{3x-2}{5}\\\\y\times\:5=3x-2\\\\5y+2=3x\\\\\frac{5y+2}{3}=x\\\\x=\frac{5y+2}{3}\\\\f(y)=\frac{5y+2}{3}
hence,
f^{-1}(x)=\frac{5x+2}{3}\\\\
Answered by wifilethbridge
9

Answer:

f^{-1}(x)=\frac{5x+2}{3}

Step-by-step explanation:

Given : f(x)=\frac{3x-2}{5}

To Find: inverse of f(x)

Solution:

f(x)=\frac{3x-2}{5}

let f(x)=y

So,  y=\frac{3x-2}{5}

Find the value of x

\frac{5y+2}{3}=x

Now replace x with y and y with x

\frac{5x+2}{3}=y

Thus f^{-1}(x)=\frac{5x+2}{3}

Hence the inverse is   f^{-1}(x)=\frac{5x+2}{3}

Similar questions