If f(x) =sinx ,prove that 1/f(x)-f(x)=cotx.cosx
Answers
Answered by
8
Answer:
Given:
f(x) = sinx
To prove;
1/f(x) - f(x) = cotx•cosx
Proof:
If f(x) = sinx , then 1/f(x) = 1/sinx.
Now;
LHS = 1/f(x) - f(x)
= 1/sinx - sinx
= {1 - (sinx)^2}/sinx
= (cosx)^2/sinx
{ 1-(sinx)^2 = (cosx)^2 }
= (cosx)(cosx/sinx)
= cosx•cotx
{ cosx/sinx = cotx }
= cotx•cosx
= RHS.
Hence proved.
Similar questions