Math, asked by justin5713, 4 months ago

If f(x) = \int\limits^x_1 \frac{tan^{-1}(t)}{t} \, dt x ∈ R, then find the value of f(e)² - f(1/e²)​

Answers

Answered by MaIeficent
3

Step-by-step explanation:

Given:-

  • \sf f(x) =   \int \limits ^{x} _{1}\dfrac{ {tan}^{ - 1} (t)}{t}dt

To Find:-

  •  \sf The \: value \: of   : \: f( {e}^{2} )  - f \bigg( \dfrac{1}{ {e}^{2} } \bigg)

Solution:-

\sf f(x) =   \int \limits ^{x} _{1}\dfrac{ {tan}^{ - 1} (t)}{t}dt

\sf \therefore f \bigg( \dfrac{1}{x} \bigg ) =   \int \limits ^{1/x} _{1}\dfrac{ {tan}^{ - 1} (t)}{t}dt

\sf Put \:  \: t = \dfrac{1}{u}

 \sf \therefore dt =   - \dfrac{du}{ {u}^{2} }

\sf  f \bigg( \dfrac{1}{x} \bigg ) =   \int \limits ^{x} _{1}\dfrac{ {tan}^{ - 1}  \bigg(\dfrac{1}{u} \bigg) }{\dfrac{1}{u}} \bigg( -  \dfrac{1}{ {u}^{2} } \bigg) du

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  =    - \int \limits ^{x} _{1}\dfrac{ {tan}^{ - 1}  \bigg(\dfrac{1}{u} \bigg) }{u}  du

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  =    - \int \limits ^{x} _{1}\dfrac{ {cot}^{ - 1}(u)}{u}  du

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  =    - \int \limits ^{x} _{1}\dfrac{ {cot}^{ - 1}(t)}{t}  dt

\sf Now, \: f(x) - f\bigg(\dfrac{1}{x}\bigg)

 \sf =   \int \limits ^{x} _{1}\dfrac{ {tan}^{ - 1} (t)}{t}dt   - \int \limits ^{x} _{1}\dfrac{ {cot}^{ - 1}(t)}{t}  dt

 \sf =   \int \limits ^{x} _{1}\dfrac{ {tan}^{ - 1} (t)}{t}dt   - \bigg( -  \int \limits ^{x} _{1}\dfrac{ {cot}^{ - 1}(t)}{t}  dt \bigg)

 \sf =   \int \limits ^{x} _{1}\dfrac{ {tan}^{ - 1} (t) +  {cot}^{ - 1} (t)}{t}dt

 \sf =   \int \limits ^{x} _{1} \dfrac{\pi}{2}  \times  \dfrac{1}{t} dt

 \sf =   \dfrac{\pi}{2} log(x)

  \underline{ \boxed{  \therefore\sf \: f( {e}^{2} )  - f \bigg( \dfrac{1}{ {e}^{2} } \bigg) =  \frac{\pi}{2}  log_{e}( {e}^{2})  = \pi}}

Similar questions