Math, asked by ashrita2003sgmailcom, 1 year ago

if f(x)= x-1/x+1 then show that f(1/x)= -f(x)

Answers

Answered by shadow1924
90

f(x) =  \frac{x - 1}{x + 1}
f( \frac{1}{x} ) =  \frac{ \frac{1}{x} - 1 }{ \frac{1}{x} + 1 }
 =  \frac{ \frac{1 - x}{x} }{ \frac{1 + x}{x} }
 =    \frac{1 - x}{1 + x}
 =  -  \frac{x - 1}{x + 1}
 =  - f(x)
Answered by ColinJacobus
46

Answer:  The proof is done below.

Step-by-step explanation:  We are given the following function :

f(x)=\dfrac{x-1}{x+1}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)

We are to prove that :

f\left(\dfrac{1}{x}\right)=-f(x).

Replacing x by \dfrac{1}{x} in equation (i), we have

f\left(\dfrac{1}{x}\right)\\\\\\=\dfrac{\dfrac{1}{x}-1}{\dfrac{1}{x}+1}\\\\\\=\dfrac{\dfrac{1-x}{x}}{\dfrac{1+x}{x}}\\\\\\=\dfrac{1-x}{x}\times\dfrac{x}{1+x}\\\\\\=\dfrac{1-x}{1+x}\\\\=-\dfrac{x-1}{x+1}\\\\=-f(x).

Thus, we get

f\left(\dfrac{1}{x}\right)=-f(x).

Hence proved.

Similar questions