Math, asked by TbiaSupreme, 1 year ago

If f:{x | x≥1,x ∈ R} —> {x | x≥2,x ∈ R},f(x)=x+1/x, f⁻¹(x)=.......,Select Proper option from the given options.
(a) x+√x²-4/2
(b) x-√x²-4/2
(c) x²+1/x
(d) √x²-4

Answers

Answered by luciianorenato
0

Answer:

The proper answer is (a) f^{-1}(x) = \frac{x+\sqrt{x^2-4}}{2}

Step-by-step explanation:

Let f(x) = y. Then

y = x+\frac{1}{x} \Rightarrow xy = x^2+1 \Rightarrow x^2-xy+1 = 0

We can find x in function of y by quadratic formula, that is,

x = \frac{y \pm \sqrt{y^2-4\cdot 1 \cdot 1}}{2} = \frac{y \pm \sqrt{y^2-4}}{2}

Once we have x\geq 1, we have to choose the signal to be +, otherwise x would be very small if y is great (for example, if y = 100, x = 0.01)

Then the correct answer is (a).

Answered by pulakmath007
9

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \sf{A  \: function  \: f :  \{x : x \geqslant 1 \: ,x \in \mathbb{R} \} \to \:   \{x : x \geqslant 2\: ,x \in \mathbb{R} \}}

defined as

 \displaystyle \sf{ f(x) = x +  \frac{1}{x} \: }

TO DETERMINE

 \sf{  {f}^{ - 1}(x) \:  \: }

EVALUATION

Here

 \sf{{f}^{ - 1} :  \{x : x \geqslant 2 \: ,x \in \mathbb{R} \} \to \:   \{x : x \geqslant 1\: ,x \in \mathbb{R} \}}

 \sf{Let \:  \: y =  {f}^{ - 1} (x)}

 \implies \sf{f(y) = x \:  \: }

 \implies \:  \displaystyle \sf{ x  = y +  \frac{1}{y} \: }

 \implies \:  \displaystyle \sf{  {y}^{2}   - xy + 1 = 0\: }

 \implies \:  \displaystyle \sf{ y =  \frac{x  \: \pm \:  \sqrt{ {x}^{2} - 4 }  }{x}  \: }

 \:  \displaystyle \sf{Now \:  if  \:  \:  \:   {f}^{ - 1} (x) =  \frac{x  \: -  \:  \sqrt{ {x}^{2} - 4 }  }{x}  \: }

 \:  \displaystyle \sf{Then \:  \:  \:   {f}^{ - 1} (3) = \frac{3 -  \sqrt{5} }{2}   \notin \:  \:   \{x : x \geqslant 1\: ,x \in \mathbb{R}\} }

 \therefore \:  \:  \displaystyle \sf{ {f}^{ - 1} (x) =  \frac{x  \:  +   \:  \sqrt{ {x}^{2} - 4 }  }{x}  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

f: R—>R,f(x)=x²+2x+3

Select Proper option from the given options.

(a) a bijection

(b) one-one but not onto

https://brainly.in/question/5596321

Similar questions