Math, asked by pinkichani098, 3 months ago

If f(x)=x^2-5y+7, evaluate f(2)-f(-1)+f(1/3)​

Answers

Answered by Anonymous
11

Answer:

Correct Question:

If f(x) =x² - 5x +7, Then evaluate f(2)-f(-1)+f(1/3)

Given:

  • f(x) = x² - 5x + 7

Find:

  • Evaluate f(2) - f(-1) + f(1/3)

Solution:

 { \sf{{Given \:  Quadratic  \: Equation}{ \red{  \:  : f(x) =  {x}^{2} - 5x + 7 }}}}

 : { \implies{ \sf{f(2) =  {(2)}^{2}  - 5(2) + 7}}} \\  \\  : { \implies{ \sf{f(2) = 4 - 10 + 7}}} \\  \\  : { \implies{ \sf{f(2) = 1}}}

So, Value of f(2) is 1

 \:  : { \implies{ \sf{f( - 1) =  {( - 1)}^{2}  - 5( - 1) + 7}}} \\  \\  : { \implies{ \sf{f( - 1) = 1 + 5 + 7}}} \\  \\  : { \implies{ \sf{f( -  1) =13 }}}

So, Value of f(-1) is 13

 \:  : { \implies{ \sf{f \bigg( \frac{1}{3}  \bigg) =  { \bigg( \frac{1}{3} \bigg)}^{2}  - 5 \bigg(\frac{1}{3} \bigg) + 7 }}} \\  \\  : { \implies{ \sf{f \bigg( \frac{1}{3}  \bigg) =  \frac{1}{9} -  \frac{5}{3}  + 7 }}} \\  \\  : { \implies{ \sf{f \bigg( \frac{1}{3} \bigg) =  \frac{49}{9}  }}}

So, Value of f(1/3) is 49/9

 :  \implies{ \sf{f(2) - f( - 1) + f \bigg( \frac{1}{3} \bigg)}} \\  \\  : \sf { \implies{1 - 13 +  \frac{49}{9} }} \\  \\  :  \implies{ \sf{ - 12 +  \frac{49}{9} }} \\  \\  :  \implies{ \sf{ \frac{ - 59}{9} }}

{ \therefore \pink{ \sf{{ \sf{f(2) - f( - 1) + f  \bigg(\frac{1}{3}  \bigg)=  \frac{ - 59}{9} }} }}} \\

Similar questions