Math, asked by ishaankedar2004, 10 months ago

]if f(x) = x+3 / x+2 , prove that x= (2f(x) - 3) / (1-f(x))

Answers

Answered by MaheswariS
13

\underline{\textbf{Given:}}

\mathsf{f(x)=\dfrac{x+3}{x+2}}

\underline{\textbf{To prove:}}

\mathsf{x=\dfrac{2\,f(x)-3}{1-f(x)}}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{2\,f(x)-3}{1-f(x)}}

\mathsf{=\dfrac{2\left(\dfrac{x+3}{x+2}\right)-3}{1-\left(\dfrac{x+3}{x+2}\right)}}

\mathsf{=\dfrac{\dfrac{2x+6-3(x+2)}{x+2}}{\dfrac{x+2-x-3}{x+2}}}

\mathsf{=\dfrac{\dfrac{2x+6-3x-6}{x+2}}{\dfrac{2-3}{x+2}}}

\mathsf{=\dfrac{\dfrac{-x}{x+2}}{\dfrac{-1}{x+2}}}

\mathsf{=\dfrac{-x}{-1}}

\mathsf{=x}

\implies\boxed{\mathsf{\dfrac{2\,f(x)-3}{1-f(x)}=x}}

Answered by pulakmath007
15

SOLUTION

GIVEN

 \displaystyle \sf{f(x) =  \frac{x + 3}{x + 2} }

TO PROVE

 \displaystyle \sf{ x =  \frac{ 2f(x) - 3}{1 - f(x)  }   }

PROOF

 \displaystyle \sf{f(x) =  \frac{x + 3}{x + 2} }

Cross multiplication gives

 \displaystyle \sf{(x + 2)f(x) = x + 3 }

 \displaystyle \sf{ \implies \: x f(x)+ 2f(x) = x + 3 }

 \displaystyle \sf{ \implies \: x f(x) - x = 3 -  2f(x)  }

 \displaystyle \sf{ \implies \: x \bigg[f(x) - 1 \bigg]= 3 -  2f(x)  }

 \displaystyle \sf{ \implies \: x =  \frac{3 -  2f(x)}{f(x) - 1 }   }

Multiplying numerator and denominator both by - 1 we get

 \displaystyle \sf{ \implies \: x =  \frac{ 2f(x) - 3}{1 - f(x)  }   }

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. show that f:Q–>Q is defined by f(x)= 5x+4 is bijection and find f^-1

https://brainly.in/question/12939457

2. Represent all possible one-one functions from the set A = {1, 2} to the set B = {3,4,5) using arrow diagram.

https://brainly.in/question/22321917

Similar questions