If f(x)=x/[sqrt(1+x^2)],
then (fofof)(x)=
Answers
f(x)=x/√(1+x²)
→f(f(x))=[ x/√(1+x²)]/√(1+(x/√(1+x²))²)
→[x/√(1+x²)]/√(1+(x²/1+x²))
→[x/√(1+x²)]/√(1+2x²/1+x²)
→x/√(1+2x²)
now ,f(f(f(x)))=[x/√(1+x²)]/√(1+2(x/√(1+x²)²)
→[x/√(1+x²)]/√(1+(2x²/1+x²))
→[x/√(1+x²)]/√(1+3x²/1+x²)
→x/√(1+3x²)
I hope this will help u :)
Answer:
f(x)=x/V(1+x2)
f(x)=x/V(1+x2)+f({f{x))=[ x/v(1+x³)]/v(1+(x/v(1+x³))^)
f(x)=x/V(1+x2)+f({f{x))=[ x/v(1+x³)]/v(1+(x/v(1+x³))^)+[x//(1+x*}J/v(1+(x®/1+x³))
f(x)=x/V(1+x2)+f({f{x))=[ x/v(1+x³)]/v(1+(x/v(1+x³))^)+[x//(1+x*}J/v(1+(x®/1+x³))[x/v/(1+x?)]//(1+2x?/1+x²)
f(x)=x/V(1+x2)+f({f{x))=[ x/v(1+x³)]/v(1+(x/v(1+x³))^)+[x//(1+x*}J/v(1+(x®/1+x³))[x/v/(1+x?)]//(1+2x?/1+x²)+x/-/(1+2x2)
f(x)=x/V(1+x2)+f({f{x))=[ x/v(1+x³)]/v(1+(x/v(1+x³))^)+[x//(1+x*}J/v(1+(x®/1+x³))[x/v/(1+x?)]//(1+2x?/1+x²)+x/-/(1+2x2)now ,f(f(f(x)))=[x/(1+x²)]/v(1+2(x/v(1+x²)?)
f(x)=x/V(1+x2)+f({f{x))=[ x/v(1+x³)]/v(1+(x/v(1+x³))^)+[x//(1+x*}J/v(1+(x®/1+x³))[x/v/(1+x?)]//(1+2x?/1+x²)+x/-/(1+2x2)now ,f(f(f(x)))=[x/(1+x²)]/v(1+2(x/v(1+x²)?)+[x/V(1+x³)J/v(1+(2x?/1+x*))
f(x)=x/V(1+x2)+f({f{x))=[ x/v(1+x³)]/v(1+(x/v(1+x³))^)+[x//(1+x*}J/v(1+(x®/1+x³))[x/v/(1+x?)]//(1+2x?/1+x²)+x/-/(1+2x2)now ,f(f(f(x)))=[x/(1+x²)]/v(1+2(x/v(1+x²)?)+[x/V(1+x³)J/v(1+(2x?/1+x*))+[x//(1+x?)]//(1+3x²/1+x²)
f(x)=x/V(1+x2)+f({f{x))=[ x/v(1+x³)]/v(1+(x/v(1+x³))^)+[x//(1+x*}J/v(1+(x®/1+x³))[x/v/(1+x?)]//(1+2x?/1+x²)+x/-/(1+2x2)now ,f(f(f(x)))=[x/(1+x²)]/v(1+2(x/v(1+x²)?)+[x/V(1+x³)J/v(1+(2x?/1+x*))+[x//(1+x?)]//(1+3x²/1+x²)+x/V(1+3x?)
f(x)=x/V(1+x2)+f({f{x))=[ x/v(1+x³)]/v(1+(x/v(1+x³))^)+[x//(1+x*}J/v(1+(x®/1+x³))[x/v/(1+x?)]//(1+2x?/1+x²)+x/-/(1+2x2)now ,f(f(f(x)))=[x/(1+x²)]/v(1+2(x/v(1+x²)?)+[x/V(1+x³)J/v(1+(2x?/1+x*))+[x//(1+x?)]//(1+3x²/1+x²)+x/V(1+3x?)Step-by-step explanation:
Hope it will help