Math, asked by jasleen90, 1 month ago

if f(x) = x² - 5x + 1 then evaliate f(2) - f(-1) + f(⅓)​

Answers

Answered by BlessedOne
218

\large\sf\underline{Given\::}

Polynomial :

  • \sf\:f(x)~=~x^{2}-5x+1

\large\sf\underline{To\::}

  • Calculate the value of [ f(2) - f(-1) + f(⅓) ]

\large\sf\underline{Concept\::}

Here we are given a polynomial f(x) = x² - 5x + 1 and we are asked to evaluate the value of f(2) - f(-1) + f(⅓) .

We would solve this question in 4 steps. At first, we would calculate the value of f(2) , by substituting 2 in place of x in the given polynomial, similarly we would calculate the value of f(-1) , f(⅓) . Then finally we would substitute the value of f(2) , f(-1) and f(⅓) in f(2) - f(-1) + f(⅓) . Doing so we will get our final answer.

Let's do it :D !!

\large\sf\underline{Solution\::}

\small{\mathfrak{1^{st}~step~:~Calculating~the~value~of~f(2)}}

\sf\:Given~polynomial~f(x) ~=~x^{2}-5x+1

  • Substituting the value of x as 2

\sf\dashrightarrow\:f(2) ~=~2^{2}-5 \times 2+1

\sf\dashrightarrow\:f(2) ~=~4-10+1

\sf\dashrightarrow\:f(2) ~=~-6+1

\small{\underline{\boxed{\mathrm{\dashrightarrow~f(2)~=~(-5)}}}}

_____________

\small{\mathfrak{2^{nd}~step~:~Calculating~the~value~of~f(-1)}}

\sf\:Given~polynomial~f(x) ~=~x^{2}-5x+1

  • Substituting the value of x as ( - 1 )

\sf\dashrightarrow\:f(-1) ~=~(-1)^{2}-5 \times (-1)+1

\sf\dashrightarrow\:f(-1) ~=~1-(-5)+1

\sf\dashrightarrow\:f(-1) ~=~1+5+1

\sf\dashrightarrow\:f(-1) ~=~6+1

\small{\underline{\boxed{\mathrm{\dashrightarrow\:f(-1)\:=\:7}}}}

_____________

\small{\mathfrak{3^{rd}~step~:~Calculating~the~value~of~f(⅓)}}

\sf\:Given~polynomial~f(x) ~=~x^{2}-5x+1

  • Substituting the value of x as ( ⅓ )

\sf\dashrightarrow\:f(⅓) ~=~(⅓)^{2}-5 \times (⅓)+1

\sf\dashrightarrow\:f(⅓) ~=~\frac{1}{9}-\frac{5}{3}+1

  • LCM of 9 and 3 = 9

\sf\dashrightarrow\:f(⅓) ~=~\frac{1-15+9}{9}

\sf\dashrightarrow\:f(⅓) ~=~\frac{-14+9}{9}

\small{\underline{\boxed{\mathrm{\dashrightarrow\: f(⅓) ~=~\frac{-5}{9}}}}}

_____________

\small{\mathfrak{Final~step~:~Calculating~the~value~of~f(2)-f(-1)+f(⅓)}}

\sf\:f(2) - f(-1) + f(⅓)

  • Substituting the values we got for f(2) , f(-1) and f(⅓)

\sf\dashrightarrow\: (-5)- 7 + \frac{-5}{9}

\sf\dashrightarrow\: -5- 7 + \frac{-5}{9}

\sf\dashrightarrow\:\frac{[9 \times (-5)]-(9 \times 7)+[1 \times (-5)]}{9}

\sf\dashrightarrow\:\frac{[-45]-(63)+[-5]}{9}

\sf\dashrightarrow\:\frac{-45-63-5}{9}

\sf\dashrightarrow\:\frac{-108-5}{9}

\small{\underline{\boxed{\mathrm\red{\dashrightarrow\:f(2) - f(-1) + f(⅓) ~=~\frac{-113}{9}}}}}

===================

Note :- Scroll left to right to view the full solution !~

Answered by MrM00N
12

[tex]\large\sf\underline{Given\::}

Polynomial :

\sf\:f(x)~=~x^{2}-5x+1

\large\sf\underline{To\::}

Calculate the value of [ f(2) - f(-1) + f(⅓) ]

\large\sf\underline{Concept\::}

Here we are given a polynomial f(x) = x² - 5x + 1 and we are asked to evaluate the value of f(2) - f(-1) + f(⅓) .

We would solve this question in 4 steps. At first, we would calculate the value of f(2) , by substituting 2 in place of x in the given polynomial, similarly we would calculate the value of f(-1) , f(⅓) . Then finally we would substitute the value of f(2) , f(-1) and f(⅓) in f(2) - f(-1) + f(⅓) . Doing so we will get our final answer.

Let's do it :D !!

\large\sf\underline{Solution\::}

\small{\mathfrak{1^{st}~step~:~Calculating~the~value~of~f(2)}}

\sf\:Given~polynomial~f(x) ~=~x^{2}-5x+1

Substituting the value of x as 2

\sf\dashrightarrow\:f(2) ~=~2^{2}-5 \times 2+1

\sf\dashrightarrow\:f(2) ~=~4-10+1

\sf\dashrightarrow\:f(2) ~=~-6+1

\small{\underline{\boxed{\mathrm{\dashrightarrow~f(2)~=~(-5)}}}}

_____________

\small{\mathfrak{2^{nd}~step~:~Calculating~the~value~of~f(-1)}}

\sf\:Given~polynomial~f(x) ~=~x^{2}-5x+1

Substituting the value of x as ( - 1 )

\sf\dashrightarrow\:f(-1) ~=~(-1)^{2}-5 \times (-1)+1

\sf\dashrightarrow\:f(-1) ~=~1-(-5)+1

\sf\dashrightarrow\:f(-1) ~=~1+5+1

\sf\dashrightarrow\:f(-1) ~=~6+1

\small{\underline{\boxed{\mathrm{\dashrightarrow\:f(-1)\:=\:7}}}}

_____________

\small{\mathfrak{3^{rd}~step~:~Calculating~the~value~of~f(⅓)}}

\sf\:Given~polynomial~f(x) ~=~x^{2}-5x+1

Substituting the value of x as ( ⅓ )

\sf\dashrightarrow\:f(⅓) ~=~(⅓)^{2}-5 \times (⅓)+1

\sf\dashrightarrow\:f(⅓) ~=~\frac{1}{9}-\frac{5}{3}+1

LCM of 9 and 3 = 9

\sf\dashrightarrow\:f(⅓) ~=~\frac{1-15+9}{9}

\sf\dashrightarrow\:f(⅓) ~=~\frac{-14+9}{9}

\small{\underline{\boxed{\mathrm{\dashrightarrow\: f(⅓) ~=~\frac{-5}{9}}}}}

_____________

\small{\mathfrak{Final~step~:~Calculating~the~value~of~f(2)-f(-1)+f(⅓)}}

\sf\:f(2) - f(-1) + f(⅓)

Substituting the values we got for f(2) , f(-1) and f(⅓)

\sf\dashrightarrow\: (-5)- 7 + \frac{-5}{9}

\sf\dashrightarrow\: -5- 7 + \frac{-5}{9}

\sf\dashrightarrow\:\frac{[9 \times (-5)]-(9 \times 7)+[1 \times (-5)]}{9}

\sf\dashrightarrow\:\frac{[-45]-(63)+[-5]}{9}

\sf\dashrightarrow\:\frac{-45-63-5}{9}

\sf\dashrightarrow\:\frac{-108-5}{9}

\small{\underline{\boxed{\mathrm\red{\dashrightarrow\:f(2) - f(-1) + f(⅓) ~=~\frac{-113}{9}}}}}

===================

Note :- Scroll left to right to view the full solution !~[/tex]

Similar questions