Math, asked by Jibiya, 11 months ago

If f(x)=x4 - 2x + 3x^2 - ax + b is a polynomial such that
when it is divided by x - 1 and x + 1, the remainders are
respectively 5 and 19. Determine the remainder When )
is divided by (x-2)​

Answers

Answered by radhika9585
10

Answer:

p(x) = x {}^{4}  - 2x + 3x {}^{2}  - ax + b \\ f(x) = x - 1and \: g(x) = x + 1 \\ when \: p(x)divided \:  \: by \:  \: (x - 1)then \: rem. = 5 \\ x - 1 = 0 \\ x = 1 \\ by \: rem. \: th. \\ p(x) = x {}^{4}  - 2 \times 1 + 3 \times 1 {}^{2}  - a \times 1 + b \\  = 1 - 2 + 3 - a +b   \\  = 2 - a + b = 5 \\  =  - a + b = 5 - 2 \\   =  - a + b = 3.........(1) \\ when \: p(x) \: divided \: by \: (x + 1)then \: rem. = 19 \\ x + 1 = 0 \\ x =  - 1 \\ by \: rem. \: th. \\ p(x) =  - 1 {}^{4}  - 2 \times  - 1 + 3 \times - 1 {}^{2}  - a \times  - 1 + b \\ 1 - 2 \times  - 1 + 3 + a + b \\ 1 + 2 + 3 + a + b \\ 6 + a + b = 19 \\ a + b = 13.........(2) \\ from \: eq \: (1)and \: (2) \\  \: \:   - a + b = 3 \\  \: a + b = 13 \: adding \\  -  -  -  -  -  -  -  -  \\ 2b = 16 \\  -  -  -  -  -  -  -  -  \\ b = 8 \\ from \: eq \: ......(2) \\ a + 8 = 13 \\ a = 13 - 8 \\ a = 5 \\ p(x) = x {}^{4}  - 2 x + 3x { }^{2}  - ax + b  \\ x {}^{4}  - 2x + 3x { }^{2}  - 5x + 8 \\ g(x) = x - 2 = 0 \\ x = 2 \\ by \: rem \: . \: th . \\ p(x) = x {}^{4}  - 2x + 3x {}^{2}  - ax + b \\ 2 {}^{4}  - 2 \times 2 + 3 \times 2 {}^{2}  - 5 \times 2 + 8 \\ 16 - 4 + 3 \times 4 - 5 \times 2 + 8 \\  = 16 - 4 + 12 - 10 + 8 \\  = 36 - 14 \\  = 22......

Similar questions