Math, asked by guidelines6990, 10 months ago

If f(x) =x⁴-2x³+3x²-ax-b when divided by x-1, the remainder is 6, then find the value of a + b

Answers

Answered by ashishks1912
21

The value of a+b is -4

Step-by-step explanation:

  • Given polynomial is f(x)=x^4-2x^3+3x^2-ax-b
  • Also given that the polynomial f(x) when divided by x-1, the remainder is 6

To find the value of a+b in given polynomial  :

         x^3-x^2+2x+(-a+2)

        __________________

  x-1) x^4-2x^3+3x^2-ax-b

         x^4-x^3

        ___(-)__(+)____________

                 -x^3+3x^2

                 -x^3+x^2

           __(+)__(-)_______

                         2x^2-ax

                         2x^2-2x                    

                ____(-)__ (+)___________

                                 -ax+2x-b

                                 -ax+2x+a-2

                  ______(+)_(-)_(-)_(+)_____

                                              -b-a+2

                   ________________________

Since the given polynomial f(x) when divided by x-1, the remainder is 6

  • Therefore  -b-a+2=6
  • -(b+a)+2=6
  • -(b+a)=6-2
  • -(b+a)=4
  • b+a=-4

Rewritting we get a+b=-4

Therefore the value of a+b is -4.

Answered by BrainlyPopularman
35

ANSWER :

a + b = -4

EXPLANATION :

GIVEN :

A Function f(x) =x⁴ - 2x³ + 3x² - ax - b .

When function divided by x - 1 , So it gives 6 as remainder.

TO FIND :

Value of a + b

SOLUTION :

• To find remainder , we have to put x = 1 in given function.

According to the question –

=> f(1) = 6

=> (1)⁴ - 2(1)³ + 3(1)² - a(1) - b = 6

=> 1 - 2 + 3 - a - b = 6

=> 4 - 2 - (a + b) = 6

=> 2 - (a + b) = 6

=> (a + b) = 2 - 6

=> a + b = -4

Therefore , a + b = -4

Similar questions