Math, asked by adityap6720, 6 months ago

If first three terms in the expansion of a positive integral power of a binomial are 729, 7290 and 30375 respectively, find the binomial expansion.

Answers

Answered by pulakmath007
7

SOLUTION

GIVEN

The first three terms in the expansion of a positive integral power of a binomial are 729, 7290 and 30375 respectively

TO DETERMINE

The binomial expansion.

EVALUATION

Let the binomial expansion is

 \sf{ {(a + b)}^{n} }

 \sf{First  \: Term  \:  \:  {} =  {}^{n}  C_0 \:  {a}^{n}  =  {a}^{n} }

 \sf{Second  \:  Term  \:  \:  {} =  {}^{n}  C_1 \:  {a}^{n - 1}b = n {a}^{n - 1}  b}

 \displaystyle \:  \sf{Third  \: Term  \:  \:  {} =  {}^{n}  C_2 \:  {a}^{n - 2} {b}^{2}  =  \frac{n(n - 1)}{2} {a}^{n - 2} {b}^{2}   }

So by the given condition

 \displaystyle \:  \sf{{a}^{n} = 729 \:  \:  \: .....(1)  }

 \displaystyle \:  \sf{ n {a}^{n - 1} {b}^{}    = 7290 \:  \:  \:  \:  \:  \: ....(2)}

 \displaystyle \:  \sf{ \frac{n(n - 1)}{2} {a}^{n - 2} {b}^{2} = 30375 \:  \:  \:  \:  \:  \: .....(3)   }

Equation (2) ÷ Equation (1) gives

 \displaystyle \:  \sf{ \frac{nb}{a}  = 10   } \:  \:  \: ......(4)

Equation (3) ÷ Equation (2) gives

 \displaystyle \:  \sf{ \frac{n - 1}{2}   \times \frac{b}{a} =  \frac{25}{6} \:  \:  \:  \:  \:  \:  \:  \:  ........(5)    }

From Equation (4) & Equation (5) we get

 \displaystyle \:  \sf{ \frac{n - 1}{n}  =  \frac{5}{6}  }

 \displaystyle \:  \sf{ \implies \: 6n - 6 = 5n}

 \displaystyle \:  \sf{ \implies \: n  =  6}

From Equation (1) we get

 \displaystyle \:  \sf{ \implies \:  {a}^{6}  = 729}

 \displaystyle \:  \sf{ \implies \:  {a}^{6}  =  {(3)}^{6} }

 \displaystyle \:  \sf{ \implies \:  a = 3 }

From Equation (4) we get

 \displaystyle \:  \sf{ \implies \:  \frac{6 \times b}{3} = 10 }

 \displaystyle \:  \sf{ \implies \:  2b = 10 }

 \displaystyle \:  \sf{ \implies \:  b = 5 }

Hence the required binomial expansion is

 \displaystyle \:  \sf{ {(3 + 5)}^{6} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. (32C0)^2-(32C1)^2+(32C2)^2-..........(32C32)^2=

https://brainly.in/question/28583245

2. IF 1/1!9!+1/3!7!+1/5!5!+1/7!3!+1/9!=2^n /10! then n=?

https://brainly.in/question/20427754

Similar questions