Math, asked by faaiza1083p5dyqd, 1 year ago

if \frac{3+\sqrt{7}}{3-\sqrt{7}} = a+b\sqrt{7}. find the value of a and b

Answers

Answered by sivaprasath
3
Solution:

Given: \frac{3+ \sqrt{7}}{3- \sqrt{7}} =  \frac{a+b}{ \sqrt{7}}

To find: a=?,b=?

by taking conjugate,

\frac{3+ \sqrt{7}}{3- \sqrt{7}} ×  \frac{3+ \sqrt{7} }{3+ \sqrt{7}}

= \frac{(3+ \sqrt{7})^2}{(3- \sqrt{7} )( 3+\sqrt{7} )}

=[tex] \frac{(3)^2+( \sqrt{7})^2+2(3)( \sqrt{7})}{(3)^2-( \sqrt{7}^2)} [/tex]

=  \frac{9+7+6 \sqrt{7}}{9-7}

=[tex] \frac{16+6 \sqrt{7}}{2} [/tex]

=[tex]\frac{2(8+3 \sqrt{7})}{2} [/tex]

= 8+3 \sqrt{7}

a+b \sqrt{7}=8+3 \sqrt{7}

∴ a=8,b=3

 Hope it Helps!!

faaiza1083p5dyqd: thanks a lot!!
sivaprasath: np,
Similar questions