Math, asked by kundan4560, 1 year ago

If G is the centroid of the triangle ABC and if G' is
the centroid of another triangle A'B'C' then prove
that: AA' + BB' + CC' = 3GG'​

Answers

Answered by MaheswariS
28

Answer:

\textbf{Concept used:}

\boxed{\begin{minipage}{7cm}$The\:position\:vector\:of\:Centroid\:of\:\triangle\:ABC\:is\\ \\\,\overrightarrow{OG}=\frac{\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}}{3}$\end{minipage}}

\text{Let O be the origin}

\text{Given:}

\text{G and G' be centroids of }\trianlge\,ABC\text{ and }\trianlge\,A'B'C'

\text{Then,}

\bf\overrightarrow{OG}=\frac{\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}}{3}\,\text{ and }\overrightarrow{OG'}=\frac{\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}}{3}

\text{Now}

\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}

=(\overrightarrow{OA'}-\overrightarrow{OA})+(\overrightarrow{OB'}-\overrightarrow{OB})+(\overrightarrow{OC'}-\overrightarrow{OC})

=(\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'})-(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC})

=3\,\overrightarrow{OG'}-3\,\overrightarrow{OG}

=3(\overrightarrow{OG'}-\,\overrightarrow{OG})

=3\,\overrightarrow{GG'}

\implies\boxed{\bf\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=3\,\overrightarrow{GG'}}

Answered by franktheruler
8

Answer:

According to the question, G is the center of the 1st triangle ABC and G' is

the center of 2nd triangle A'B'C'

Let, O is the origin  of the triangle

then, For the first triangle -

Equation (i)  →  OG  = ( OA + OB + OC ) / 3

and similarly,  

Equation (ii)  →  OG` = ( OA` + OB` + OC` ) / 3  

   

subtract  equation (ii) from equation (i)

OG -OG' =  ( OA +OB +OC ) / 3 - ( OA` + OB` + OC` ) / 3    

⇒ GG`  = ( AA` + BB` + CC` ) / 3

⇒  AA`+BB`+CC`= 3GG` ( proved )

Similar questions