If G is the CENTROID of triangle ABC then prove that
AB∧2 +BC∧2+AC∧2=3(GA∧2+GB∧2+GC∧2) BEST OF LUCK FOR THE EQUATION
Answers
Answered by
10
Using cosine rule in a triangle ABC and triangle ABD (D = mid point of BC, E = mid point of AC, and F = mid point of AB)
cos B = (AB² + BC² - AC² ) / 2 AB * AC
cos B = (AB² + BD² - AD² ) / 2 AB * AD
equating both sides, replace BD = BC/2 we get
2 AB² + 2 AC² = 4 AD² + BC² write now AD = GA + GD = (3/2) GA
= 4 (9/4 GA² ) + BC² = 9 GA²+ BC²
similarly 2 AB² + 2 BC² =9 GB2 + AC2
2 BC² + 2 AC² = 9 GC2 + AB2
Add the three equations
you get answer
cos B = (AB² + BC² - AC² ) / 2 AB * AC
cos B = (AB² + BD² - AD² ) / 2 AB * AD
equating both sides, replace BD = BC/2 we get
2 AB² + 2 AC² = 4 AD² + BC² write now AD = GA + GD = (3/2) GA
= 4 (9/4 GA² ) + BC² = 9 GA²+ BC²
similarly 2 AB² + 2 BC² =9 GB2 + AC2
2 BC² + 2 AC² = 9 GC2 + AB2
Add the three equations
you get answer
kvnmurty:
thanks & u r welcome
Similar questions
Social Sciences,
9 months ago
English,
9 months ago
Science,
9 months ago
English,
1 year ago
Social Sciences,
1 year ago