Math, asked by childmarriage6346, 1 year ago

If g(x) = (2x – 3) is a factor of f(x) = 2x³ – 9x2 + x + p, find the value of p. Hence factirize f(x).

Answers

Answered by hukam0685
2
Solution:

If g(x) is a factor of f(x),than it satisfies f(x)

So,here I am going to apply remainder theorem,in which we put the value of x from g(x) into f(x)

g(x) = 0 \\  \\ 2x - 3 = 0 \\  \\ 2x = 3 \\  \\ x =  \frac{3}{2}  \\
Now put this value in f(x)

2 {x}^{3}  - 9 {x}^{2}  + x + p  \\  \\ 2 ({ \frac{3}{2} })^{3}  - 9( { \frac{3}{2} )}^{2}  + ( \frac{3}{2} ) + p = 0 \\  \\  \frac{27}{4}  -  \frac{81}{4}  +  \frac{3}{2}  + p = 0 \\  \\ p =  \frac{81}{4}  -  \frac{27}{4}  -  \frac{3}{2}  \\  \\  p=  \frac{81- 27 - 6}{4}  \\  \\ p =  \frac{48}{4}  \\  \\ p = 12 \\  \\
Now to factorise f(x)

2 {x}^{3}  - 9 {x}^{2}  + x + 12 \\  \\2x - 3) 2{x}^{3}  - 9{x}^{2}  + x + 12( {x}^{2} - 3x - 4   \\  \\   \:  \:  \:  \:   \:  \:  \:  \:  \: \:  \:  \:  \: 2 {x}^{3}  - 3 {x}^{2}  \\  -  -  -  -  -  -  -  -  -  -  -  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 6 {x}^{2}  + x \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 6 {x}^{2}   + 9x \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  -  -  -  -  -  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 8x + 12 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: - 8x + 12 \\   \:  \:  \:  \: -  -  -  -  -  -  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0 \:  \:
Now factorise

 {x}^{2}  - 3x - 4 \\  \\  {x}^{2}  - 4x + x - 4 \\  \\ x(x - 4) + 1(x - 4) \\  \\ (x - 4)(x + 1) \\  \\
So factors of f(x) are
(2x - 3)(x - 4)(x + 1) \\
Hope it helps you
Similar questions