The diagonals of a rhombus ABCD intersect at O. If ∠ADC = 120° and OD = 6 cm, find :(i) ∠OAD(ii) side AB(iii) perimeter of ABCD
Answers
Answered by
43
Answer:
(i) 60º (ii) 12 cm (iii) 48 cm
Step-by-step explanation:
Find ∠OAD
∠OAD = ∠OCD (Isosceles triangle)
∠OAD = (180 - 120) ÷ 2
∠OAD = 30º
Find side ∠DAB:
∠ADC + ∠DAB = 180 (opposite sides of a rhombus)
120 + ∠DAB = 180
∠DAB = 180 - 120 = 60º
FInd DB:
BD = OD = 6 cm
DB = 6 x 2 = 12 cm
Define x:
Let the length of side AB = x
The length of side AD = x (All sides of a rhombus are equal)
Solve x:
BD² = AB² + AD² - 2(AB)(AD)Cos(∠DAB)
12² = x² + x² - 2(x)(x) Cos(60)
144 = 2x² - 2x²(0.5)
144 = x²
x = √144
x = 12 cm
Find side AB:
AB = x
AB = 12 cm
Find the perimeter:
Perimeter = 4 x sides
Perimeter = 4 x 12
Perimeter = 48 cm
Answer: (i) 60º (ii) 12 cm (iii) 48 cm
Attachments:
Answered by
8
Answer:
I. 60deg
II. 12 cm
III. 48 cm
Step-by-step explanation:
You can do it practically
Similar questions