Math, asked by Anonymous, 1 day ago

If g(x) = x² + x + 1 and (g o f)(x) = 4x² - 10x + 5. Then find f(5/4).​

Answers

Answered by user0888
10

\Large\boxed{\text{The value does not exist.}}

\Large\text{\underline{\underline{Exact form}}}

Let us find the exact form of the equation.

Let us suppose that -

\text{$\cdots\longrightarrow f\left(x\right)=t.$}

Then we get the following equations -

\text{$\cdots\longrightarrow\begin{cases} & (g\circ f)(x)=4x^{2}-10x+5 \\  & g(t)=t^{2}+t+1. \end{cases}$}

Equating,

\text{$\cdots\longrightarrow 4x^{2}-10x+5=t^{2}+t+1$}

\text{$\cdots\longrightarrow t^{2}+t-4x^{2}+10x-4=0$}

\text{$\cdots\longrightarrow t=\dfrac{-1\pm\sqrt{1+16x^{2}-40x+16}}{2}$}

\text{$\cdots\longrightarrow t=\dfrac{-1\pm\sqrt{16x^{2}-40x+17}}{2}$}

Hence, -

\text{$\cdots\longrightarrow\boxed{f(x)=\dfrac{-1+\sqrt{16x^{2}-40x+17}}{2}}$}

or, -

\text{$\cdots\longrightarrow\boxed{f(x)=\dfrac{-1-\sqrt{16x^{2}-40x+17}}{2}.}$}

The domain is restricted to -

\text{$\cdots\longrightarrow \boxed{x\in\mathbb{R}-(\dfrac{5-\sqrt{2}}{4},\dfrac{5+\sqrt{2}}{4}).}$}

\Large\text{\underline{\underline{Explanation}}}

We know that the domain of the function is restricted to -

\text{$\cdots\longrightarrow \boxed{x\in\mathbb{R}-(\dfrac{5-\sqrt{2}}{4},\dfrac{5+\sqrt{2}}{4}).}$}

But, -

\text{$\cdots\longrightarrow$ $x=\dfrac{5}{4}$ is not in the domain.}

Hence, -

\text{$\cdots\longrightarrow$ the value of $f\left(\dfrac{5}{4}\right)$ \underline{does not exist.}}

Attachments:
Similar questions