Math, asked by rithwick9710, 1 year ago

If (HE)^H=SHE, where the alphabets take the values from (0-9) & all the alphabets are single digit then find the value of (S+H+E)?

Answers

Answered by Avengers00
30

\underline{\underline{\Huge{\textbf{Solution:}}}}

Given that,

The alphabets E, S, H can take any value from 0-9

\LARGE{\mathsf (HE)^H = SHE}

\\

\underline{\Huge{\textbf{Step-1:}}}

\textsf{Note the Range of values that RHS can take}

From this it can be concluded that,

\begin{itemize}\begin{enumerate}\item \textsf{RHS is a 3-digit No. }\item \textsf{None of the digits in the RHS are same}\end{enumerate}\end{itemize}

\implies \sf SHE \in (111, 999)———[1]

\\

\underline{\Huge{\textbf{Step-2:}}}

\textsf{Find the Range of values that HE(in LHS) can take}

\quad\maltese\; Consider the least possible value for E and using \textsf{trial and Error Method} to find the Range of values within which LHS falls so that [1] gets satisfied.

Here, Least possible value for an alphabet = 0

(Given that an alphabet can take any value from 0-9)

\therefore Take\: E = 0

\begin{itemize}\item Say H = 1\begin{itemize}\item $\rm HE^H \implies 10^1$=10\begin{itemize}\item $10 \notin (111, 999)$\item $\therefore\rm H \neq 1$\end{itemize}\end{itemize}\end{itemize}

\begin{itemize}\item Say H = 2\begin{itemize}\item $\rm HE^H \implies 20^2$ = 400\begin{itemize}\item $400 \in (111, 999)$\item $\therefore\rm H = 2$\end{itemize}\end{itemize}\end{itemize}

\begin{itemize}\item For H $>$ 2\begin{itemize}\item $\sf HE \notin (111, 999)$\item $\because\texttt{RHS has to be a 3-digit No. }$\end{itemize}\end{itemize}

Clearly\: HE \in (20, 29]

\implies H= 2 ———[2]

\quadIn the interval, 20 was excluded due to the fact that the Result obtained for (20)^2 has two similar digits which doesn't satisfy the RHS (which has different values.)

\\

\underline{\Huge{\textbf{Step-3:}}}

\textsf{Find the values that E(in LHS) can take}

\mathsf{HE^H =\underbrace{HE\timesHE \times HE\times HE \cdots\cdots HE}_{H\: times}}

Consider the terms contributing in LHS to Result the Unit digit E.

(H\underline{E})^H = SH\underline{E}

\underbrace{E\timesE \times E\times E \cdots\cdots E}_{H\: times}\longrightarrow\textsf{Resulted Unit digit E}

\quad\maltese\; It is observed that,

\textbf{E is number which when multiplied} \\\textbf{ by itself a certain number of times results} \\ \textbf{the same number at it's unit's place. }

If the No. has Unit digit 1, 5, 6, then any power of that No. will have the same unit digit.

In other words,

\boxed{\begin{minipage}{5cm}\maltese \; \; \textsf{Let $xy^z = k$,\\\\ If \; $y$} =\begin{cases}1 &\textsf{Unit digit in k is 1}\\5 &\textsf{Unit digit in k is 5}\\6 &\textsf{Unit digit in k is 6}\end{cases}\; \; \end{minipage}}

\therefore E= 1\: or\: 5\: or\ 6 ———[3]

\\

\underline{\Huge{\textbf{Step-4:}}}

\textsf{Check the possibilities by combining}\\\textsf{the results of [2] and [3] and note the result}

Combining [2] & [3],

We have

\bf HE = \begin{cases}21\\25\\26\end{cases}

\underline{(HE)}^H= S\underline{HE}

\quad\maltese\;It is also observed that,

\textbf{the tens Digit and Unit digit in}\\ \textbf{base of LHS is same as the tens Digit}\\ \textbf{and unit's digits in result of product.}

21 doesn't satisfy this condition \sf(21^2= 441)

26 doesn't satisfy this condition \sf(22^2 = 484)

\textsf{The only Number that satisfies this}\\\textsf{condition is \Large{\textbf{25.}}}

\\

\boxed{\huge{\boxed{\LARGE{\mathsf ( \underline{25})^2 = 6 \underline{25}}}}}

\therefore \begin{Large}\begin{array}{ccc}\bf S = 6;&\bf H = 2 ;& \bf E= 5\end{array}\end{Large}

\\

\underline{\Huge{\textbf{Step-5:}}}

\textsf{Find S+H+E}

\underline{\textsf{S+H+E =}}

\underline{\textsf{6+2+5 = 13}}

\\

\blacksquare\; \; \textsf{The value of S+H+E = \Huge{\underline{\LARGE{\textbf{13}}}}}


Grimmjow: Awesome!
Avengers00: Thank you :)
Similar questions