Math, asked by dpkmjn, 10 months ago

if if a2+ 1/a2 = 18, find the value of a3-1/a3, using only the positive value of a-1/a.

Answers

Answered by MaheswariS
4

\underline{\textbf{Given:}}

\mathsf{a^2+\dfrac{1}{a^2}=18}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{a-\dfrac{1}{a}}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{a^2+\dfrac{1}{a^2}=18}

\textsf{Add 2 on bothsides we get,}

\mathsf{a^2+\dfrac{1}{a^2}+2=20}

\mathsf{\left(a+\dfrac{1}{a}\right)^2=20}

\mathsf{Now,}

\mathsf{\left(a-\dfrac{1}{a}\right)^2=\left(a+\dfrac{1}{a}\right)^2-4}

\mathsf{\left(a-\dfrac{1}{a}\right)^2=20-4}

\mathsf{\left(a-\dfrac{1}{a}\right)^2=16}

\mathsf{a-\dfrac{1}{a}=\sqrt{16}}

\implies\boxed{\mathsf{a-\dfrac{1}{a}=4}}

\textsf{We know that,}

\mathsf{(a-b)^3=a^3-b^3-3ab(a-b)}

\mathsf{\left(a-\dfrac{1}{a}\right)^3=a^3-\dfrac{1}{a^3}-3\left(a-\dfrac{1}{a}\right)}

\mathsf{(4)^3=a^3-\dfrac{1}{a^3}-3(4)}

\mathsf{64=a^3-\dfrac{1}{a^3}-12}

\mathsf{a^3-\dfrac{1}{a^3}=64+12}

\implies\boxed{\mathsf{a^3-\dfrac{1}{a^3}=76}}

Similar questions