Math, asked by deepakkumaripsoxv8fs, 1 year ago

if in an a p sn=5n2+3n then find 20th term

Answers

Answered by NIMISHGUPTA
9
sn=5n2+3n
s1=5(1)2+3(1)=5+3=8
s2=5(2)2+3(2)=5*4+6=20+6=26
s1=a1
s2=a1+a2
26=s1+a2
26=8+a2
26-8=a2
a2=18
then
d=a2-a1=18-8=10
an=a+(n-1)d
a20=a+(20-1)d
a20=8+19*10
a20=8+190
a20=198
Answered by wifilethbridge
6

Answer:

198

Step-by-step explanation:

Given : S_n=5n^2+3n

To Find :  20th term

Solution:

S_n=5n^2+3n

Substitute n = 20

S_{20}=5(20)^2+3(20)

S_{20}=2060

Substitute n = 19

S_{19}=5(19)^2+3(19)

S_{19}=1862

Now ,a_n=S_n-S_{n-1}

So, a_{20}=S_{20}-S_{20-1}

a_{20}=S_{20}-S_{19}

a_{20}=2060-1862

a_{20}=198

Hence the 20th term is 198

Similar questions