Math, asked by kakulurichandraiah20, 11 months ago

if In=integral t^n/(1+t^2)dt then I6+I4= ​

Answers

Answered by MaheswariS
4

\underline{\textsf{Given:}}

\mathsf{I_n=\displaystyle\int\dfrac{t^n}{1+t^2}\,dt}

\underline{\textsf{To find:}}

\mathsf{I_6+I_4}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{I_6+I_4}

\mathsf{=\displaystyle\int\dfrac{t^6}{1+t^2}\,dt+\int\dfrac{t^4}{1+t^2}\,dt}

\textsf{Merging the integrals, we get}

\mathsf{=\displaystyle\int\dfrac{t^6+t^4}{1+t^2}\,dt}

\mathsf{=\displaystyle\int\dfrac{t^4(t^2+1)}{1+t^2}\,dt}

\mathsf{=\displaystyle\int\dfrac{t^4(1+t^2)}{1+t^2}\,dt}

\mathsf{=\displaystyle\int\,t^4\,dt}

\mathsf{=\dfrac{t^5}{5}+C}

\underline{\textsf{Answer:}}

\mathsf{I_6+I_4=\dfrac{t^5}{5}+C}

Find more:

Integrate of e^x sec x(1+tanx) dx

https://brainly.in/question/6040969

Similar questions