Math, asked by asb16031983, 5 months ago

if in the 1 figure triangle are similar and in figure-2 quadrilateral are similar then find the value of x and y​

Attachments:

Answers

Answered by rathnadharma7676
0

Answer:

dont know!!! which class,s it is

Answered by Yugant1913
11

1)Since, the given triangle are similar, hence their corresponding sides will be proportional.

∴ As given in the figure,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{10}{6}  =  \frac{15}{x - 2}  \\

⟹\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{5}{3}  =  \frac{15}{x - 2}  \\

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 5x - 10 = 45

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 5x = 45 + 10 = 55

 ∴   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{55}{5}  = 11 \\

and \:  \:  \:  \:  \:  \:  \:  \:  \frac{8}{10}  =  \frac{y + 3}{15}  \\

⟹ \:  \:  \:  \:  \:  \frac{4}{5}  =  \frac{y + 3}{15}  \\

⟹  \:  \:  \:  \:  \:  \:  \:  \:  \: 5y + 15 = 60

⟹  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 5y = 60 - 15 = 45

   ∴ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y =  \frac{45}{5}  = 9 \\

Hence, x = 11, y = 9.

2)since, the given quadrilateral are similar, hence their corresponding sides are proportion.

     ∴  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{x + 2}{8}  =  \frac{15}{12}  \\

[ ∵ given quadrilaterals are parallelogram, hence in the large quadrilateral the side opposite to 12 will also 12]

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{x + 2}{8}  =   \frac{5}{4}  \\

⟹ \:  \:  \:  \:  \:  \:  \: 4x + 8 = 40

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \: 4x = 40 - 8 = 32

∴   \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{32}{4}  = 8. \\

Since, corresponding angles in similar quadrilateral are equal, hence the corresponding angles of 70° in the large quadrilateral is also 70° in the small quadrilateral. Now, since, the quadrilaterals are parallelogram, hence the angle 70° and the angle of y°are the interior angles of the same side. Hence their sum will be 180°.

   ∴  \:  \:  \:  \:  \:  \:  \:  \: y + 70° = 180°

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \: y = 180° - 70° = 110°

Thus, x = 8, y = 110°.

Similar questions