If θ is an acute angle such that , then the value of is
(a)
(b)
(c)
(d)
Answers
Answered by
0
SOLUTION :
The correct option is (d) : 1/ 7
Given : sec² θ = 3
sec θ = √3/1
In right angle ∆ ,
sec θ = Hypotenuse /base = √3/1
Hypotenuse = √3 , base = 1
Hypotenuse² = ( perpendicular)² + (Base)²
[By Pythagoras theorem]
√3² = (perpendicular)² + (1)²
3 = (perpendicular)² + (1)
(perpendicular)² = 3 - 1
(perpendicular)² = 2
perpendicular = √2
tan θ = perpendicular/base = √2/1
tan θ = √2
cosec θ = Hypotenuse/perpendicular = √3/√2
cosec θ = √3/√2
The value of : tan² θ - cosec² θ / tan² θ + cosec² θ
= (√2)² - (√3/√2)² / (√2)² + (3/√2)²
= ( 2 - 3/2) / ( 2 + 3/2)
= ( 2/1 - 3/2) / ( 2/1 + 3/2)
= [(2×2 - 3)/2 ] / [(2×2 + 3)/2 ]
= [(4 - 3)/2] / [(4 + 3)/2]
= (½) / (7/2)
= ½ × 2/7
= 1/7
tan² θ - cosec² θ / tan² θ + cosec² θ = 1/7
Hence, the value of tan² θ - cosec² θ / tan² θ + cosec² θ is 1/7 .
HOPE THIS ANSWER WILL HELP YOU…
Answered by
3
The correct option is d. 1/7
Similar questions