If θ is an acute angle such that, then the value of is
(a)
(b)
(c)
(d)
Answers
Answered by
12
SOLUTION :
The correct option is (a) : 7/8
Given : tan² θ = 8/7
tan θ = √8/7
In right angle ∆ ,
tan θ = perpendicular/base = √8/7
perpendicular = √8 , base = √7
Hypotenuse = √( perpendicular)² + (Base)²
[By Pythagoras theorem]
Hypotenuse = √ (√8)² + (√7)² = √(8 + 7) = √15
Hypotenuse = √15
sin θ = perpendicular / hypotenuse = √8/√15
cos θ = base/ hypotenuse = √7/√15
The value of : (1 + sin θ)(1 - sin θ) / ( 1 + cos θ) (1 - cos θ )
= [(1 + √8/√15) (1 - √8/√15)] / [(1 + √7/√15) (1 - √7/√15)]
= (1² - (√8/√15)²) / (1² - (√7/√15)²)
[(a + b ) (a -b) = a² - b²]
= (1 - 8/15)/(1 - 7/15)
= [(15 - 8)/15] / [(15 -7)/15]
= (7/15) / (8/15)
= 7/15 × 15/8
= ⅞
(1 + sin θ)(1 - sin θ) / ( 1 + cos θ) (1 - cos θ ) = ⅞ .
Hence, the value of (1 + sin θ)(1 - sin θ) / ( 1 + cos θ) (1 - cos θ ) is ⅞.
HOPE THIS ANSWER WILL HELP YOU…
Answered by
4
Option ( A ) is correct.
Explanation :
Here I am using A instead of theta.
Given tan² A = 8/7 ---( 1 )
************************************
We know the algebraic identity:
( x + y )( x - y ) = x² - y²
and
Trigonometric identities:
cos²A + sin²A = 1
i ) 1 - sin² A = cos²A
ii ) 1 - cos²A = sin²A
***********************************
Value of
[(1+sinA)(1-sinA)]/[(1+cosA)(1-cosA)]
= ( 1 - sin²A )/( 1 - cos² A )
= ( cos²A )/( sin²A )
= cot²A
= 1/tan²A
= 1/( 8/7 )
= 7/8
••••••
Explanation :
Here I am using A instead of theta.
Given tan² A = 8/7 ---( 1 )
************************************
We know the algebraic identity:
( x + y )( x - y ) = x² - y²
and
Trigonometric identities:
cos²A + sin²A = 1
i ) 1 - sin² A = cos²A
ii ) 1 - cos²A = sin²A
***********************************
Value of
[(1+sinA)(1-sinA)]/[(1+cosA)(1-cosA)]
= ( 1 - sin²A )/( 1 - cos² A )
= ( cos²A )/( sin²A )
= cot²A
= 1/tan²A
= 1/( 8/7 )
= 7/8
••••••
Similar questions
English,
7 months ago
Accountancy,
7 months ago
Hindi,
7 months ago
Business Studies,
1 year ago
Biology,
1 year ago
English,
1 year ago
Math,
1 year ago