Math, asked by yadavanuragkumar352, 4 months ago

if k = 13 power 2/3 +13 power 1/3 + 1​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\mathsf{k=13^\frac{2}{3}+13^\frac{1}{3}+1}

\textbf{To prove:}

\mathsf{k^3-3k^2-37k-144=0}

\textbf{Solution:}

\mathsf{Consider,}

\mathsf{k=13^\frac{2}{3}+13^\frac{1}{3}+1}

\mathsf{k-1=13^\frac{2}{3}+13^\frac{1}{3}}

\textsf{cubing on bothsides, we get}

\mathsf{(k-1)^3=(13^\frac{2}{3}+13^\frac{1}{3})^3}

\mathsf{(k-1)^3=(13^\frac{2}{3})^3+(13^\frac{1}{3})^3+3(13^\frac{2}{3})(13^\frac{1}{3})(13^\frac{2}{3}+13^\frac{1}{3})}

\mathsf{(k-1)^3=(13^\frac{2}{3})^3+(13^\frac{1}{3})^3+3(13)(k-1)}

\mathsf{(k-1)^3=13^2+13+39(k-1)}

\mathsf{k^3-1^3-3k(k-1)=169+13+39k-39}

\mathsf{k^3-1-3k^2+3k=143+39k}

\implies\boxed{\mathsf{k^3-3k^2-37k-144=0}}

\textbf{Find more:}

If x is equal to 3 + 3 raised to the power 1 by 3 + 3 raise to the power 2 by 3 then show that x cube minus 9 X square + 18 x minus 12 is equal to zero

https://brainly.in/question/10830460

Answered by laura2020
0

Step-by-step explanation:

If x is equal to 3 + 3 raised to the power 1 by 3 + 3 raise to the power 2 by 3 then show that x cube minus 9 X square + 18 x minus 12 is equal to zero

Similar questions