If k and 2k are zeros of f(x) = x3 + 4x2 + 9kx - 90, find k and all three zeros of f(x).
Answers
Answered by
44
Step-by-step explanation:
f(x) = x³ + 4x² + 9kx – 90.
f(k) = k³ + 4k² + 9kk – 90 = 0
k³ + 4k² + 9k² – 90 = 0
k³ + 13k² – 90 = 0
k³ + 13k² = 90 Eq. (1)
f(2k) = (2k)³ + 4(2k)² + 9k(2k) – 90 = 0
8k³ + 16k² + 18k² – 90 = 0
8k³ + 34k² – 90 = 0
4k³ + 17k² = 45 Eq. (2)
k³ + 13k² = 90 Eq. (1)
4k³ + 17k² = 45 Eq. (2)
52k³ + 221k² = 585 Eq. (2) × 13
17k³ + 221k² = 1530 Eq. (1) × 17
-----subtract-------------------------
35k³ = –945
k³ = –945/35 = –27
k = –3
2k = –6
Other root = –(–90)/((–3)(–6)) = 5
x = {–3, –6, 5}
lucky14430:
hi
Similar questions