If k = Cosec + Cot then prove that k^2 - 1 / k^2 + 1 = cos
nobel:
...
Answers
Answered by
30
HELLO DEAR,
K = COSEC∅ + COT∅-------------(1)
we know that:-
cosec²∅ - cot²∅ = 1
(cosec∅ - cot∅)(cosec∅ + cot∅) = 1
from--(1)
(cosec∅ - cot∅) × k = 1
=> (cosec∅ - cot∅) = k-----------(2)
now adding---(1) and---(2)
we get,
COSEC∅ + COT∅ + cosec∅ - cot∅ = k + 1/k
=> 2cosec∅ = (k² + 1)/k
=> 2/sin∅ = (k²+1)/k
=> sin∅ = 2k/(k²+1)
on squaring Both side,
we get,
sin²∅ = 4k²/(k²+1)²
=> ( 1 - cos²∅) = 4k²/(k²+1)²
=> cos²∅ = 1 - 4k²/(k²+1)²
=> cos²∅ =
I HOPE ITS HELP YOU DEAR,
THANKS
K = COSEC∅ + COT∅-------------(1)
we know that:-
cosec²∅ - cot²∅ = 1
(cosec∅ - cot∅)(cosec∅ + cot∅) = 1
from--(1)
(cosec∅ - cot∅) × k = 1
=> (cosec∅ - cot∅) = k-----------(2)
now adding---(1) and---(2)
we get,
COSEC∅ + COT∅ + cosec∅ - cot∅ = k + 1/k
=> 2cosec∅ = (k² + 1)/k
=> 2/sin∅ = (k²+1)/k
=> sin∅ = 2k/(k²+1)
on squaring Both side,
we get,
sin²∅ = 4k²/(k²+1)²
=> ( 1 - cos²∅) = 4k²/(k²+1)²
=> cos²∅ = 1 - 4k²/(k²+1)²
=> cos²∅ =
I HOPE ITS HELP YOU DEAR,
THANKS
Answered by
19
HEYA!!!!
Refer the attachment for your answer.
HOPE THIS HELPS U...
Refer the attachment for your answer.
HOPE THIS HELPS U...
Attachments:
Similar questions